	Concrete	Pictorial	Abstract
Understanding 100s	Understand the cardinality of 100, and the link with 10 tens. Use cubes to place into groups of 10 tens.	Unitise 100 and count in steps of 100. 100 200 300	Represent steps of 100 on a number line and a number track and count up to 1,000 and back to 0.
Understanding place value to 1,000	Unitise 100s, 10s and 1 s to build 3-digit numbers.	Use equipment to represent numbers to 1,000. Use a place value grid to support the structure of numbers to 1,000 . Place value counters are used alongside other equipment. Children should understand how each counter represents a different unitised amount.	Represent the parts of numbers to 1,000 using a part-whole model. $215=200+10+5$ Recognise numbers to 1,000 represented on a number line, including those between intervals.

Adding 100s	Use known facts and unitising to add multiples of 100 . $3+2=5$ 3 hundreds +2 hundreds $=5$ hundreds $300+200=500$	Use known facts and unitising to add multiples of 100 . $3+4=7$ 3 hundreds +4 hundreds $=7$ hundreds $300+400=700$	Use known facts and unitising to add multiples of 100 . Represent the addition on a number line. Use a part-whole model to support unitising. $\begin{aligned} & 3+2=5 \\ & 300+200=500 \end{aligned}$
3-digit number + 1s, no exchange or bridging	Use number bonds to add the 1s. 10 LOLLIES $214+4=?$ Now there are $4+4$ ones in total. $4+4=8$ $214+4=218$	Use number bonds to add the 1s. Use number bonds to add the ls . $5+4=9$ $\begin{aligned} & 245+4 \\ & 5+4=9 \end{aligned}$ $245+4=249$	Understand the link with counting on. Use number bonds to add the 1 s and understand that this is more efficient and less prone to error. $245+4=?$ I will add the 1s.

					$\begin{aligned} & 5+4=9 \\ & \text { So, } 245+4=249 \end{aligned}$
3－digit number＋ 1s with exchange	Understand that when the 1 s sum to 10 or more，this requires an exchange of 10 ones for 1 ten． Children should explore this using unitised objects or physical apparatus．	Exchange 10 ones for 1 ten where needed．Use a place value grid to support the understanding．			Understand how to bridge by partitioning to the 1 s to make the next 10. $\begin{aligned} & 135+7=? \\ & 135+5+2=142 \end{aligned}$ Ensure that children understand how to add 1s bridging a 100. $\begin{aligned} & 198+5=? \\ & 198+2+3=203 \end{aligned}$
		H	T	0	
				עםםם	
		H	T	0	
				$\begin{aligned} & \text { gagaga } \\ & \text { gat } \end{aligned}$	
				\qquad	
		H	T	0	
			瞃瞃	$\begin{array}{\|c\|c\|} \hline 00000 \\ 09000 \\ \hline 00 \end{array}$	
		H	T	0	
				$\square \square$	
		H	T	0	
				日	
		$35+7=142$			

3-digit number + 10s, no exchange	Calculate mentally by forming the number bond for the 10s. $34+50$ here are 3 tens and 5 tens altogether. $+5=8$ total there are 8 tens. $34+50=284$	Calculate mentally by forming the number bond for the 10s. $51+30=?$ $\begin{aligned} & 5 \text { tens }+3 \text { tens }=8 \text { tens } \\ & 351+30=381 \end{aligned}$	Calculate mentally by forming the number bond for the 10s. $753+40$ I know that $5+4=9$ $\begin{aligned} \text { So, } 50+40 & =90 \\ 753+40 & =793 \end{aligned}$
3-digit number + 10s, with exchange	Understand the exchange of 10 tens for 1 hundred. \square	Add by exchanging 10 tens for 1 hundred. $34+20=?$ $184+20=204$	Understand how the addition relates to counting on in 10s across 100. $184+20=?$ I can count in 10s ... 194 ... 204 $184+20=204$ Use number bonds within 20 to support efficient mental calculations. $385+50$ There are 8 tens and 5 tens.

			That is 13 tens. $\begin{aligned} & 385+50=300+130+5 \\ & 385+50=435 \end{aligned}$
3-digit number + 2-digit number	Use place value equipment to make and combine groups to model addition.	Use a place value grid to organise thinking and adding of 1 s , then 10 s .	Use the vertical column method to represent the addition. Children must understand how this relates to place value at each stage of the calculation.
3-digit number + 2-digit number, exchange required	Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent $154+72$. Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so I will exchange.	Represent the required exchange on a place value grid using equipment. $275+16=?$ $275+16=291$ Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to allow children	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation. $275+16=291$

		to visualise the concept and see how the method relates to place value. Children should be encouraged at every stage to select methods that are accurate and efficient.	
3-digit number + 3-digit number, no exchange	Use place value equipment to make a representation of a calculation. This may or may not be structured in a place value grid. $26+541$ is represented as:	Represent the place value grid with equipment to model the stages of column addition.	Use a column method to solve efficiently, using known bonds. Children must understand how this relates to place value at every stage of the calculation.
3-digit number + 3-digit number, exchange required	Use place value equipment to enact the exchange required. There are 13 ones. I will exchange 10 ones for 1 ten.	Model the stages of column addition using place value equipment on a place value grid.	Use column addition, ensuring understanding of place value at every stage of the calculation.

			$126+217=343$ Note: Children should also study examples where exchange is required in more than one column, for example $185+318=$?
Representing addition problems, and selecting appropriate methods	Encourage children to use their own drawings and choices of place value equipment to represent problems with one or more steps. These representations will help them to select appropriate methods.	Children understand and create bar models to represent addition problems. $275+99=?$ $275+99=374$	Use representations to support choices of appropriate methods. I will add 100, then subtract 1 to find the solution. $128+105+83=?$ I need to add three numbers.

			$128+105=233$ 233 23 128 105 83 316 233
Year 3 Subtraction			
Subtracting 100s	Use known facts and unitising to subtract multiples of 100 . $\begin{aligned} & 5-2=3 \\ & 500-200=300 \end{aligned}$	Use known facts and unitising to subtract multiples of 100. $\begin{aligned} & 4-2=2 \\ & 400-200=200 \end{aligned}$	Understand the link with counting back in 100s. Use known facts and unitising as efficient and accurate methods. know that $7-4=3$. Therefore, 1 know that 700 $400=300$.
3-digit number - $1 s$, no exchange	Use number bonds to subtract the 1 s . $214-3=?$	Use number bonds to subtract the 1 s . $319-4=?$	Understand the link with counting back using a number line. Use known number bonds to calculate mentally. $76-4 \text { = ? }$

	$\begin{aligned} & 4-3=1 \\ & 214-3=211 \end{aligned}$	$\begin{aligned} & 9-4=5 \\ & 319-4=315 \end{aligned}$	
3-digit number 1s, exchange or bridging required	Understand why an exchange is necessary by exploring why 1 ten must be exchanged. Use place value equipment.	Represent the required exchange on a place value grid. $51-6=?$	Calculate mentally by using known bonds. $\left\{\begin{array}{l} 51-6=? \\ 51-1-5=145 \end{array}\right.$
3-digit number 10s, no exchange	Subtract the 10s using known bonds.	Subtract the 10s using known bonds. 8 tens -1 ten $=7$ tens	Use known bonds to subtract the 10 s mentally. $372-50=?$ $70-50=20$ So, $372-50=322$

	$381-10=?$ 8 tens with 1 removed is 7 tens. $381-10=371$	$381-10=371$	
3-digit number 10s, exchange or bridging required	Use equipment to understand the exchange of 1 hundred for 10 tens.	Represent the exchange on a place value grid using equipment. $10-20=$? peed to exchange 1 hundred for 10 tens, to help subtract 2 tens. $210-20=190$	Understand the link with counting back on a number line. Use flexible partitioning to support the calculation. $35-60=?$ $\begin{aligned} 235 & =100+130+5 \\ 35-60 & =100+70+5 \\ & =175 \end{aligned}$
3-digit number up to 3-digit number	Use place value equipment to explore the effect of splitting a whole into two parts, and understand the link with taking away.	Represent the calculation on a place value grid.	Use column subtraction to calculate accurately and efficiently.

	вต่ ロロロ		$\begin{array}{r} H \\ \hline 9 \end{array} \quad \begin{array}{r} 9 \\ \hline-3 \end{array} 5 \begin{aligned} & 9 \\ & \hline \end{aligned}$
3－digit number－ up to 3－digit number， exchange required	Use equipment to enact the exchange of 1 hundred for 10 tens，and 1 ten for 10 ones．	lodel the required exchange on a place value grid． $75-38=$ ？ I need to subtract 8 ones，so I will exchange a ten for 10 ones．	Use column subtraction to work accurately and efficiently． If the subtraction is a 3 －digit number subtract a 2－digit number，children should understand how the recording relates to the place value， and so how to line up the digits correctly． Children should also understand how to exchange in calculations where there is a zero in the 10 s column． \square

Representing subtraction problems		Use bar models to represent subtractions. 'Find the difference' is represented as two bars for comparison. Team A Team B Bar models can also be used to show that a part must be taken away from the whole.	Children use alternative representations to check calculations and choose efficient methods. Children use inverse operations to check additions and subtractions. The part-whole model supports understanding. have completed this subtraction. $25-270=255$ will check using addition. $\begin{array}{r} \mathrm{H} \text { T O O } \\ \hline 2750 \\ +255 \\ \hline 525 \\ \hline \end{array}$
Year 3 Multiplication			
Understanding equal grouping and repeated addition	Children continue to build understanding of equal groups and the relationship with repeated addition. They recognise both examples and non-examples using objects.	Children recognise that arrays demonstrate commutativity. This is 3 groups of 4 . This is 4 groups of 3 .	Children understand the link between repeated addition and multiplication. groups of 3 is 24 . $\begin{aligned} & +3+3+3+3+3+3+3=24 \\ & \times 3=24 \end{aligned}$

Understanding and using $\times 3, \times 2$, $\times 4$ and $\times 8$ tables.	Children learn the times-tables as 'groups of', but apply their knowledge of commutativity. I can use the $\times 3$ table to work out how many keys. I can also use the $\times 3$ table to work out how many batteries.	Children understand how the $\times 2, \times 4$ and $\times 8$ tables are related through repeated doubling.	Children understand the relationship between related multiplication and division facts in known times-tables. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 10 \div 5=2 \\ & 10 \div 2=5 \end{aligned}$
Using known facts to multiply 10s, for example 3×40	Explore the relationship between known times-tables and multiples of 10 using place value equipment. Make 4 groups of 3 ones. Make 4 groups of 3 tens. What is the same? What is different?	Understand how unitising 10s supports multiplying by multiples of 10 . 4 groups of 2 ones is 8 ones. 4 groups of 2 tens is 8 tens. $4 \times 2=8$	Understand how to use known times-tables to multiply multiples of 10 . $\begin{aligned} & \times 2=8 \\ & \times 20=80 \end{aligned}$

		$4 \times 20=80$	
Multiplying a 2-digit number by a 1-digit number	Understand how to link partitioning a 2-digit number with multiplying. ach person has 23 flowers. ach person has 2 tens and 3 ones. here are 3 groups of 2 tens. here are 3 groups of 3 ones. Use place value equipment to model the multiplication context. here are 3 groups of 3 ones. here are 3 groups of 2 tens.	Use place value to support how partitioning is linked with multiplying by a 2-digit number. $\times 24=$? $\times 4=12$ $\begin{aligned} & \times 20=60 \\ & p+12=72 \\ & \times 24=72 \end{aligned}$	Use addition to complete multiplications of 2-digit numbers by a 1-digit number. $\begin{aligned} & \times 13=? \\ & \times 3=12 \\ & 2+40=52 \\ & \times 13=52 \end{aligned}$

Multiplying a 2-digit number by a 1-digit number, expanded column method	Use place value equipment to model how 10 ones are exchanged for a 10 in some multiplications. $\begin{aligned} & 3 \times 24=? \\ & 3 \times 20=60 \\ & 3 \times 4=12 \end{aligned}$ $\begin{aligned} & 3 \times 24=60+12 \\ & 3 \times 24=70+2 \\ & 3 \times 24=72 \end{aligned}$	Understand that multiplications may require an exchange of 1s for 10s, and also 10s for 100s. $4 \times 23=?$ ~T $4 \times 23=92$ $\begin{aligned} 5 \times 23 & =? \\ 5 \times 3 & =15 \end{aligned}$	Children may write calculations in expanded column form, but must understand the link with place value and exchange. Children are encouraged to write the expanded parts of the calculation separately. $\begin{aligned} & \times 28=? \\ & \frac{T O}{28} \\ & \times \begin{array}{r} 5 \\ \hline 40 \\ 100 \\ 140 \\ \hline \end{array} 5 \times 8 \\ & \hline \end{aligned}$

		$\begin{aligned} & 5 \times 20=100 \\ & 5 \times 23=115 \end{aligned}$	
Year 3 Division			
Using times-tables knowledge to divide	Use knowledge of known times-tables to calculate divisions. 4 divided into groups of 8 . here are 3 groups of 8 .	Use knowledge of known times-tables to calculate divisions. $48 \div 4=12$ 8 divided into groups of 4. here are 12 groups. $\begin{aligned} & x 12=48 \\ & 8 \div 4=12 \end{aligned}$	Use knowledge of known times-tables to calculate divisions. I need to work out 30 shared between 5. I know that $6 \times 5=30$ so I know that $30 \div 5=6$. A bar model may represent the relationship between sharing and grouping. $\begin{aligned} & 24 \div 4=6 \\ & 24 \div 6=4 \end{aligned}$ Children understand how division is related to both repeated subtraction and repeated addition.

Understanding remainders	Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further. \|												$\square \square \square \mid$ There are 13 sticks in total. There are 3 groups of 4, with 1 remainder.	Use images to explain remainders. $22 \div 5=4$ remainder 2	Understand that the remainder is what cannot be shared equally from a set. $\begin{aligned} & 22 \div 5=? \\ & 3 \times 5=15 \\ & 4 \times 5=20 \end{aligned}$ $5 \times 5=25 \ldots$ this is larger than 22 So, $22 \div 5=4$ remainder 2
Using known facts to divide multiples of 10	Use place value equipment to understand how to divide by unitising. 1ake 6 ones divided by 3. ow make 6 tens divided by 3. hat is the same? What is different?	Divide multiples of 10 by unitising. 2 tens shared into 3 equal groups. tens in each group.	Divide multiples of 10 by a single digit using known times-tables. $80 \div 3=?$ 80 is 18 tens. 8 divided by 3 is 6 . 8 tens divided by 3 is 6 tens. $\begin{aligned} & 8 \div 3=6 \\ & 80 \div 3=60 \end{aligned}$												
2-digit number divided by 1-digit number, no remainders	Children explore dividing 2-digit numbers by using place value equipment.	Children explore which partitions support particular divisions.	Children partition a number into 10 s and 1 s to divide where appropriate.												

	$8 \div 2=?$ rst divide the 10s． hen divide the 1 s ． ロロロロ ロ日ロロ	I need to partition 42 differently to divide by 3. $\begin{aligned} & 42=30+12 \\ & 42 \div 3=14 \end{aligned}$	$\begin{aligned} 60 \div 2 & =30 \\ 8 \div 2 & =4 \\ 30+4 & =34 \\ 68 \div 2 & =34 \end{aligned}$ Children partition flexibly to divide where appropriate． $\begin{aligned} & 2 \div 3=? \\ & 2=40+2 \end{aligned}$ I need to partition 42 differently to divide by 3. $42=30+12$ $30 \div 3=10$ $12 \div 3=4$ $\begin{aligned} & 10+4=14 \\ & 42 \div 3=14 \end{aligned}$
2－digit number divided by 1－digit number， with remainders	Use place value equipment to understand the concept of remainder． Make 29 from place value equipment． Share it into 2 equal groups．	Use place value equipment to understand the concept of remainder in division． $29 \div 2=?$	Partition to divide，understanding the remainder in context． 67 children try to make 5 equal lines． $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \end{aligned}$

