Year 2 Calculation Policy

	Concrete	Pictorial	Abstract
Year 2 Addition			
Understanding 10s and 1s	Group objects into 10s and 1s. Bundle straws to understand unitising of 10 s .	Understand 10s and 1s equipment, and link with visual representations on ten frames. arrorrs	Represent numbers on a place value grid, using equipment or numerals.
Adding 10s	Use known bonds and unitising to add 10s. (III) I know that $4+3=7$. So, 1 know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add 10s. I know that $4+3=7$. So, 1 know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add 10s. $4+3=\square$ $4+3=7$

			$\begin{aligned} & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$
Adding a 1-digit number to a 2-digit number not bridging a 10	Add the 1 s to find the total. Use known bonds within 10. 41 is 4 tens and 1 one. 41 add 6 ones is 4 tens and 7 ones. This can also be done in a place value grid.	Add the 1s. 34 is 3 tens and 4 ones. 4 ones and 5 ones are 9 ones. The total is 3 tens and 9 ones.	Add the 1s. Understand the link between counting on and using known number facts. Children should be encouraged to use known number bonds to improve efficiency and accuracy. This can be represented horizontally or vertically. $34+5=39$ or
Adding a 1-digit number to a 2-digit number bridging 10	Complete a 10 using number bonds.	Complete a 10 using number bonds.	Complete a 10 using number bonds.

	There are 4 tens and 5 ones. I need to add 7 . I will use 5 to complete a 10, then add 2 more.		$\begin{aligned} & 7=5+2 \\ & 45+5+2=52 \end{aligned}$
Adding a 1-digit number to a 2-digit number using exchange	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.
Adding a multiple of $\mathbf{1 0}$ to a 2-digit number	Add the 10 s and then recombine. 27 is 2 tens and 7 ones. 50 is 5 tens. There are 7 tens in total and 7 ones.	Add the 10 s and then recombine. $\theta \theta \theta \theta \theta \theta$ 66 is 6 tens and 6 ones. $66+10=76$	Add the 10 s and then recombine. $\begin{aligned} & 37+20=? \\ & 30+20=50 \\ & 50+7=57 \end{aligned}$ $37+20=57$

	So, $27+50$ is 7 tens and 7 ones.	A 100 square can support this understanding.	
Adding a multiple of 10 to a 2-digit number using columns	Add the 10 s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10 s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10s represented vertically. Children must understand how the method relates to unitising of 10 s and place value. $\begin{aligned} & 1+3=4 \\ & 1 \text { ten }+3 \text { tens }=4 \text { tens } \\ & 16+30=46 \end{aligned}$
Adding two 2-digit numbers	Add the 10 s and 1 s separately. $5+3=8$	Add the 10s and 1s separately. Use a part-whole model to support.	Add the 10 s and the 1 s separately, bridging 10 s where required. A number line can support the calculations.

	There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23=58$	$\begin{aligned} & 11=10+1 \\ & 32+10=42 \\ & 42+1=43 \\ & \\ & 32+11=43 \end{aligned}$	$17+25$
Adding two 2-digit numbers using a place value grid	Add the 1 s . Then add the 10 s .		Add the 1 s . Then add the 10 s .
Adding two 2-digit numbers with exchange	Add the 1s. Exchange 10 ones for a ten. Then add the 10s.		Add the 1s. Exchange 10 ones for a ten. Then add the 10s.

			0 3 6 +2 9 5 1 $+$$T$ 0 3 6 2 9 6 5 1
Year 2 Subtraction			
Subtracting multiples of 10	Use known number bonds and unitising to subtract multiples of 10 . 8 subtract 6 is 2. So, 8 tens subtract 6 tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10 . $10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	Use known number bonds and unitising to subtract multiples of 10 . 7 tens subtract 5 tens is 2 tens. $70-50=20$

Subtracting a single-digit number	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1 s . This may be done in or out of a place value grid.	Subtract the 1s. Understand the link between counting back and subtracting the 1 s using known bonds. $\begin{array}{r} \mathrm{T} \quad \mathrm{O} \\ \hline 3 \mathrm{q} \\ -\quad 3 \\ \hline \begin{array}{l} 3 \\ \hline \end{array} \\ \hline \end{array}$
Subtracting a single-digit number bridging 10	Bridge 10 by using known bonds. 35-6 I took away 5 counters, then 1 more.	Bridge 10 by using known bonds. $35-6$ First, I will subtract 5, then 1.	Bridge 10 by using known bonds. $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$
Subtracting a single-digit number using exchange	Exchange 1 ten for 10 ones. This may be done in or out of a place value grid.	Exchange 1 ten for 10 ones.	Exchange 1 ten for 10 ones.

			$25-7=18$
Subtracting a 2-digit number	Subtract by taking away. 0000000000 0000000000 0000000000 0000000000 $\varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing$ \varnothing 61-18 I took away 1 ten and 8 ones.	Subtract the 10 s and the 1 s . This can be represented on a 100 square.	Subtract the 10 s and the 1 s . This can be represented on a number line. $64-41=$? $\begin{aligned} & 64-1=63 \\ & 63-40=23 \\ & 64-41=23 \end{aligned}$ $\begin{aligned} & 46-20=26 \\ & 26-5=21 \\ & 46-25=21 \end{aligned}$

			Ones $8 \otimes 80$ Ones 0000 $\therefore 8 \circ 0^{\circ}$ $\odot \infty$ Ones - Ones $\because \otimes^{\circ}$ * *	$\begin{array}{r} \mathrm{T} \end{array} \mathrm{O}, \begin{array}{r} 4 \\ \hline \end{array}$
Year 2 Multiplication				
Equal groups and repeated addition	Recognise equal groups and write as repeated addition and as multiplication. 3 groups of 5 chairs 15 chairs altogether	Recognis such as c and mult 3 groups 15 in tota	equal grour unters an lication.	Use a numb addition an $\begin{aligned} & 5+5+5=1 \\ & 3 \times 5=15 \end{aligned}$
Using arrays to represent	Understand the relationship between arrays, multiplication and repeated addition.	Understa multiplic	d the re ion and	Understand multiplicati

multiplication and support understanding	 4 groups of 5	4 groups of 5 ... 5 groups of 5	$5 \times 5=25$
Understanding commutativity	Use arrays to visualise commutativity. I can see 6 groups of 3 . I can see 3 groups of 6 .	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2 .	Use arrays to visualise commutativity. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$
Learning $\times 2, \times 5$ and $\times 10$ table facts	Develop an understanding of how to unitise groups of 2, 5 and 10 and learn corresponding times-table facts.	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts.	Understand how the times-tables increase and contain patterns.

	$\begin{aligned} & 3 \text { groups of } 10 \ldots 10,20,30 \\ & 3 \times 10=30 \end{aligned}$	0000000000 0000000000 0000000000 $\begin{aligned} & 10+10+10=30 \\ & 3 \times 10=30 \end{aligned}$	
Year 2 Division			

Grouping equally	Understand how to make equal groups from a whole. 0.02_{2}^{2500} \square \square $1 \text { 陉 }$ \square 8 divided into 4 equal groups. There are 2 in each group.	Understand the relationship between grouping and the division statements. $\begin{gathered} 12 \div 3=4 \\ O \\ 12 \div 4=3 \\ \square \\ 12 \div 6=2 \end{gathered}$ $12 \div 2=6$	Understand how to relate division by grouping to repeated subtraction. There are 4 groups now. 12 divided into groups of 3 . $12 \div 3=4$ There are 4 groups.
Using known times-tables to solve divisions	Understand the relationship between multiplication facts and division. 4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .	Link equal grouping with repeated subtraction and known times-table facts to support division. 40 divided by 4 is 10. Use a bar model to support understanding of the link between times-table knowledge and division. \qquad	Relate times-table knowledge directly to division. $\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 3 \times 10=30 \\ & 4 \times 10=40 \\ & 5 \times 10=50 \\ & 6 \times 10=60 \\ & 7 \times 10=70 \\ & 8 \times 10=80 \end{aligned}$ $\text { I used the } 10$ times-table to help me. $3 \times 10=30$ I know that 3 groups of 10 makes 30 , so I know that 30 divided by 10 is 3 . $3 \times 10=30 \text { so } 30 \div 10=3$

