

Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations. Use a bar model to represent calculations, including 'find the difference' with two bars as comparison.	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. $\begin{array}{rrrr} \text { Th } & H & \text { T } & 0 \\ \hline 1 & { }^{8} \not \text { P }^{14} Z & 12 \\ -1 & 5 & 5 & 8 \\ \hline & 3 & 9 & 4 \\ \hline \end{array}$ Use column subtraction for decimal problems, including in the context of measure.

		Method I $\begin{array}{llllll} & 1 & 2 & 3 & 5 & \\ \times & & & 2 & 1 & \\ \times & & & & 5 & 1 \times 5 \\ & & & & 5 & 1 \times 5 \\ & & & 3 & 0 & 1 \times 30 \\ & & 2 & 0 & 0 & 1 \times 200 \\ & 1 & 0 & 0 & 0 & 1 \times 1,000 \\ & & 1 & 0 & 0 & 20 \times 5 \\ & & 6 & 0 & 0 & 20 \times 30 \\ & 4 & 0 & 0 & 0 & 20 \times 200 \\ 2 & 0 & 0 & 0 & 0 & 20 \times 1,000 \\ \hline 2 & 5 & 9 & 3 & 5 & 21 \times 1,235 \end{array}$	$\begin{array}{llllll} & 1 & 2 & 3 & 5 & \\ \times & & 2 & 1 \\ \hline & 1 & 2 & 3 & 5 & \\ \hline 2 & 4 & 7 & 0 & 0 & 20 \times 1,235 \\ \hline 2 & 5 & 9 & 3 & 5 & 21 \times 1,235 \\ \hline \end{array}$
Using knowledge of factors and partitions to compare methods for multiplications	Use equipment to understand square numbers and cube numbers. $\begin{aligned} & 5 \times 5=5^{2}=25 \\ & 5 \times 5 \times 5=5^{3}=25 \times 5=125 \end{aligned}$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately. Represent and compare methods using a bar model.	Use a known fact to generate families of related facts. Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$

Dividing by a 2-digit number using long division	Use equipment to build numbers from groups. 182 divided into groups of 13. There are 14 groups.	Use an model $377 \div$ ${ }^{13}$ \square $13 \quad 10$ 130 $\begin{gathered} 13 \\ \hline 130 \\ \hline \end{gathered}$ $\begin{array}{\|c} 10 \\ 13 \\ \hline 130 \\ \hline \end{array}$ $377 \div$	rea model alongside written division to e process. $=29$	Use long division where factors are not useful (for example, when dividing by a 2-digit prime number). Write the required multiples to support the division process. $377 \div 13=?$ 13 $\begin{array}{\|lll} \hline 3 & 77 \end{array}$ $-$1 30 247 $-$1 3 0 1 10 7 $-\frac{1 \quad 7}{0} \frac{9}{29}$ $377 \div 13=29$ A slightly different layout may be used, with the division completed above rather than at the side.

			$\quad 3$ 3 7 9 8 $-\quad 6$ 3 0 1 6 8 218 9 $-\quad 6$ $-\quad 3$ Divisions with a remainder explored in problem-solving contexts.
Dividing by 10 , 100 and 1,000	Use place value equipment to explore division as exchange. Exchange each 0.1 for ten 0.01 s . Divide 20 counters by 10 . $0 \cdot 2$ is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Represent division to show the relationship with multiplication. Understand the effect of dividing by 10, 100 and 1,000 on the digits on a place value grid. Understand how to divide using division by 10, 100 and 1,000. $2 \div 20=?$ \qquad \square ? $12 \div 10=1 \cdot 2$ $1.2 \div 2=0.6$	Use knowledge of factors to divide by multiples of 10, 100 and 1,000. $40 \div 50=$ \square $40 \rightarrow \div \div \div$ $\begin{aligned} & 40 \div 5=8 \\ & 8 \div 10=0 \cdot 8 \end{aligned}$ So, $40 \div 50=0.8$
Dividing decimals	Use place value equipment to explore division of decimals.	Use a bar model to represent divisions.	Use short division to divide decimals with up to 2 decimal places.

					-
(-1) (0.1) (-1) (-1) (-1)	?	?	?	?	$8 \mid 4 \cdot 24$
	$4 \times 2=$		8	$=2$	$8 \longdiv { 4 \cdot 4 2 4 }$
8 tenths divided into 4 groups. 2 tenths in each group.	So, $4 \times$			$4=0 \cdot 2$	$\begin{gathered} 0 \cdot 5 \\ 8 \longdiv { 4 \cdot 4 ^ { 2 } 2 ^ { 2 } 4 } \end{gathered}$
					$\begin{array}{r\|r} & 0 \cdot 5 \quad 3 \\ \hline 8 & 4 \cdot{ }^{4} 2^{2} 4 \end{array}$

